The planet’s natural rhythm is changing—and timekeepers around the world are watching closely. Earth is rotating faster than it used to, prompting scientists and international timekeeping authorities to consider an adjustment that has never been made before: subtracting a second from Coordinated Universal Time (UTC).
This potential step, known as a «negative leap second,» would mark a first in human history. While leap seconds have been added to synchronize clocks with Earth’s slightly irregular rotation, the idea of taking one away introduces complex challenges to technology, communications, and global systems that rely on precise timing.
For decades, timekeeping has accounted for the Earth’s variable rotation by occasionally adding a second to UTC, the global standard for civil time. These positive leap seconds help keep atomic time in harmony with the actual length of a day, which is influenced by Earth’s movements. But recent observations show a shift: instead of slowing down, the Earth is now rotating slightly faster on average.
This unforeseen increase in the speed of Earth’s rotation has caught scientists off guard. Normally, the rotation of our planet decelerates over the years because of tidal friction resulting from the Moon’s gravitational attraction. Nonetheless, variations in Earth’s core, alterations in weather patterns, and the shift of mass due to melting glaciers and moving oceans can all affect the speed of Earth’s rotation. Recent observations show that some days are slightly shorter than the usual 86,400 seconds—indicating that Earth is completing its rotation faster than before.
As this pattern persists, the time difference between Earth’s rotation and atomic clocks may increase to a level where introducing a negative leap second is essential to maintain synchronization with the planet’s true movement. This would entail deducting a second from UTC to align it with Earth’s rotation.
Applying a change of this magnitude is a significant challenge. Contemporary technology infrastructures—ranging from GPS satellites to banking systems—rely heavily on highly accurate time management. Instantly removing a second could create risks in setups not designed to deal with a time reversal. Software frameworks, data storage systems, and communication protocols would all need thorough updates and testing to smoothly adopt the adjustment. In contrast to adding a second, which is often manageable by briefly pausing, removing a second demands systems to leap forward—an action that many infrastructures might struggle to manage smoothly.
The global timekeeping community, including organizations like the International Bureau of Weights and Measures and the International Earth Rotation and Reference Systems Service, is now evaluating how best to approach this issue. The challenge lies in balancing the need for scientific accuracy with the technical realities of our increasingly digital world.
This isn’t the first time timekeeping has faced disruption from Earth’s irregular behavior. Leap seconds have caused minor outages in the past, particularly in systems that weren’t prepared for them. But because leap seconds have always been added, not subtracted, there are no established precedents or protocols for a negative leap second. That makes the current situation both novel and delicate.
The reason leap seconds exist at all stems from the difference between atomic time—which is incredibly consistent—and solar time, which is influenced by the Earth’s actual rotation. Atomic clocks, which use the vibrations of atoms to measure time, don’t vary. In contrast, solar time fluctuates slightly based on Earth’s orientation and rotation speed. To keep our time system aligned with the natural day-night cycle, leap seconds have been introduced as needed since the 1970s.
Now, Earth’s faster spin is challenging the very convention that time has flowed according to for decades. Though the differences involved are minuscule—fractions of a second—they add up over time. If left uncorrected, the misalignment between UTC and solar time would eventually become noticeable. It’s an invisible issue to most people but critical to systems that depend on nanosecond accuracy.
The question now is not only when a negative leap second might be required but also how to implement it without widespread disruption. Engineers and researchers are developing models and simulations to test how systems might react. At the same time, conversations are taking place at the international level to determine whether the current leap second system is still sustainable in the long term.
In fact, there has been growing debate in recent years about whether leap seconds should be abandoned entirely. Some argue that the complexity and risk they introduce outweigh the benefit of keeping atomic time aligned with solar time. Others believe that preserving that alignment is essential for maintaining our connection to natural time cycles, even if it requires periodic adjustments.
The discussion also reflects a broader philosophical question about time itself: should we prioritize precision and consistency above all else, or should our timekeeping reflect the natural rhythms of the planet? Earth’s speeding rotation is forcing scientists and policymakers to confront this question in real time.
Looking ahead, it’s likely that further research will clarify the causes and duration of this acceleration. If the trend continues, the world may indeed see its first-ever negative leap second—a historic moment that underscores the dynamic nature of the Earth and the intricate systems humanity has built to measure it.
Until then, timekeepers are on alert, scientists are crunching the numbers, and engineers are preparing for a shift that could ripple across the global digital landscape. One second may seem small, but in a world that runs on precision, it could make all the difference.